SOLUTION OF NONSTEADY HEAT-CONDUCTION PROBLEMS FOR A HOLLOW CYLINDER ON AN ANALOG COMPUTER

N. Yu. Taits, Yu. F. Gorshkov, and S. V. Ryabushko

We discuss the use of the MN-7 analog computer to solve the differential heat-conduction equation for a hollow cylinder in the case of boundary conditions of the second and third kinds, with uniform initial temperature distribution.

The solutions in the literature [1-6] for the problems of nonsteady heat conduction for a hollow cylinder encompass the simplest cases, or those which have little practical significance. Computer techniques permit us to find solutions for the most complex of physical problems [7-9].

In [10] we find a scheme and method for the solution of the problems of nonsteady heat conduction for a hollow cylinder under boundary conditions of first kind on an MN-7 analog computer.

Below we discuss the solutions for the problems of nonsteady heat conduction for a hollow cylinder in the case of boundary conditions of the second and third kinds, as derived by means of the MN-7 analog computer.

An unbounded hollow cylinder, at the initial instant of time, exhibits a uniform temperature (t_0) through the cross section. Let us examine two cases of the solution of the differential heat-conduction equation for a cylinder with inside-to-outside radius ratios of 0.3, 0.5, and 0.7, at a constant temperature for the ambient medium: 1) between the medium and the two surfaces of the cylinder there is transfer of heat in accordance with the law of convection; 2) between the medium and the outside surface of the cylinder there is transfer of heat in accordance with the law of convection; the inside surface is ideally insulated against heat.

The solution of the problem includes the following parts: a) conversion of the differential heat-conduction equation to machine form; b) solution of the problem on the computer; c) conversion of the machine solutions to the solutions of the physical problem.

UDC 536.2.01

We present the differential heat-conduction equation for an axisymmetric cylinder in converted form:

$$\frac{\partial \theta}{\partial F_{0}} = \frac{1}{x} \frac{\partial}{\partial x} \left(x \frac{\partial \theta}{\partial x} \right);$$

$$1 \ge \theta \ge 0; F_{0} \ge 0; K \le x \le 1;$$

$$\theta = \frac{t - t_{av}}{t_{0} - t_{av}}; \quad x = \frac{r}{R_{out}}.$$
(1)

The initial condition is $\theta(0; x) = 1$.

Institute of Metallurgy, Dnepropetrovsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 16, No. 5, pp. 858-865, May, 1969. Original article submitted June 25, 1968.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Fig. 2. Maximum temperature difference $\Delta \theta_{max} = \theta_0 - \theta_5$ in a cylinder with K = 0.3 (a) and various values of K (b) for heat transfer between the side surface on the outside and the medium: a: 1) Bi = 1; 2) 2; 3) 5; 4) 10; b: 1) K = 0.1; 2) 0.3; 3) 0.6; 4) 0.8; 5) 0.9.

The boundary conditions (for the first case):

$$\begin{aligned} \theta_{av} &= 0; \\ \frac{\partial \theta}{\partial x} \Big|_{x=1} &= \mathrm{Bi} \; \theta \; (\mathrm{Fo}; \; 1); \\ \frac{\partial \theta}{\partial x} \Big|_{x=K} &= - \mathrm{Bi} \; \mathrm{A} \theta \; (\mathrm{Fo}; \; K). \end{aligned}$$
(2)

The hollow cylinder is divided radially into \boldsymbol{z} layers of identical thickness.

Using the method of finite differences, we write the relative temperature (θ) as a function of the Fo number for the surfaces of the cylindrical layers in the form of the ordinary differential equation

$$\theta_{i}^{\prime} = \frac{1}{h^{2}} \left[\left(1 + \frac{0.5h}{K + ih} \right) \theta_{i+1} - 2\theta_{i} + \left(1 - \frac{0.5h}{K + ih} \right) \theta_{i-1} \right], \qquad (3)$$

where i = 1, 2, 3, ..., z - 1.

With (3) the partial differential heat-conduction equations is replaced by a system of z - 1 ordinary differential equations.

The boundary conditions in finite differences are written as follows:

$$\frac{\theta_{z-1} - \theta_z}{\Delta x} = \operatorname{Bi} \theta_z \quad \text{or} \quad \theta_z = \frac{\theta_{z-1}}{1 + \operatorname{Bi} h};$$
$$\frac{\theta_1 - \theta_0}{\Delta x} = \operatorname{Bi} A \theta_0 \quad \text{or} \quad \theta_0 = \frac{\theta_1}{1 + \operatorname{Bi} A h}. \quad (4)$$

With z = 5 and boundary conditions (4) we compiled the following system of ordinary differential

equations:

$$\begin{aligned} \theta'_{1} &= -a_{11}\theta_{1} + a_{12}\theta_{2}; \\ \theta'_{2} &= a_{21}\theta_{1} - a_{22}\theta_{2} + a_{23}\theta_{3}; \\ \theta'_{3} &= a_{32}\theta_{2} - a_{33}\theta_{3} + a_{34}\theta_{4}; \\ \theta'_{4} &= a_{43}\theta_{3} - a_{44}\theta_{4}. \end{aligned}$$
(5)

The computer systems of equations have been derived in the following form:

$$U'_{1} = -k_{11}U_{1} + k_{12}U_{2};$$

$$U'_{3} = k_{21}U_{1} - k_{22}U_{2} + k_{23}U_{3};$$

$$U'_{3} = k_{32}U_{2} - k_{33}U_{3} + k_{34}U_{4};$$

$$U'_{4} = k_{43}U_{3} - k_{44}U_{4}.$$
(6)

The numerical values of the constants in the computer systems of equations for the nonsteady heatconduction cases under consideration are given in Table 1.

The solutions of the systems of equations (5) derived after conversion of the solutions of the computer systems of equations (6) are shown graphically. As an example, Fig. 1 shows the curves for a hollow cylinder: the dashed line shows the approximate values of the relative temperature for the side surfaces, these having been calculated in accordance with the boundary conditions.

Figure 2 shows the maximum temperature difference across the cylinder, determined by means of the curves in Fig.1.

With boundary conditions of the second kind we solved the differential equation (1) for the cylinder, and in this equation:

	· ·		
	$M_{ m F0}$	0,001 0,001 0,001 0,001 0,001 0,001 0,005 0,001 0,001 0,001 0,001	0,005 0,001 0,001 0,001 0,001 0,001 0,001 0,004 0,001 0,004
	k 44	0,335 0,147 0,147 0,147 0,3516 0,3516 0,335 0,235 0,2480 0,2480 0,2480 0000000000000000000000000000000	0,395 0,147 0,147 0,147 0,335 0,335 0,335 0,335 0,295 0,295 0,282 0,282 0,282 0,282 0,282 0,282
	k43	$\begin{array}{c} 0,235\\ 0,235\\ 0,235\\ 0,235\\ 0,235\\ 0,235\\ 0,235\\ 0,235\\ 0,256\\ 0,$	0,235 0,269 0,269 0,269 0,275 0,276 0,235 0,235 0,235 0,235 0,235 0,235 0,276
	Ŕŝŧ	$\begin{array}{c} 0,280\\ 0,288\\ 0,$	0,288 0,106 0,2888 0,28888 0,2888 0,2888 0,2888 0,28888 0,28888 0,28888 0,288888 0,28888 0,288888 0,288888 0,28888888888
	k38	0,510 556 556 556 5556 5556 5556 5556 5556	0,510 0,510 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,510 0,500 0,510 0,500000000
	¥32	$\begin{array}{c} 0,230\\ 0,230\\ 0,236\\ 0,268\\ 0,236\\ 0,268\\ 0,268\\ 0,2330\\ 0,268\\ 0,276\\ 0$	0,230 0,258
	k 23	$\begin{smallmatrix} 0,285\\0,107\\0,288\\0,$	$\begin{smallmatrix} 0,285\\0,107\\0,288\\0,$
	£22	0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510 0,510	0,510 0,510 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,516 0,510 0,500 0,510 0,500000000
	k_{21}	0,225 0,225 0,268 0,268 0,268 0,225 0,225 0,225 0,225 0,225 0,225 0,225 0,225 0,225 0,225 0,272 0,268	0,225 0,2268 0,2268 0,2268 0,2258 0,
	ķ12	$ \begin{array}{c} 0,295\\ 0,108\\ 0,295\\ 0,295\\ 0,432\\ 0,432\\ 0,295\\ 0,295\\ 0,289\\ 0$	$\begin{array}{c} 0,295\\ 0,108\\ 0,295\\ 0,295\\ 0,289\\ 0,$
	k11	$\begin{array}{c} 0,420\\ 0,154\\ 0,156\\ 0,385\\ 0,385\\ 0,342\\ 0,496\\ 0,318\\ 0,318\\ 0,318\\ 0,318\\ 0,304\\ 0,304\\ \end{array}$	$\begin{array}{c} 0,295\\ 0,295\\ 0,295\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,298\\ 0,289\\ 0,$
	Υ.		
	Б	00000000000	
	X	0,00,00,00,00,00,00,00,00,00,00,00,00,0	00000000000000000000000000000000000000
tive Time	Boundary conditions	$\theta_{0} = \frac{\theta_{1}}{1 + BiA/h};$ $\theta_{5} = \frac{\theta_{4}}{1 + Bih}$	$\theta_{0} = \frac{\theta_{0} = \theta_{1};}{\theta_{4}}$

TABLE 1. Constants in the Equations of the Computer Systems and the Scales for the Representation of Rela-tive Time

Boundary conditions	ĸ	G)	Mj	Fo	qout Rout	$\lambda (t_{max}^{-t_{min}})$		k11	k _{1 2}	k _x	k ₂₁
$\theta_{0} = \theta_{1} - \frac{q_{out}R_{out}h\omega}{\lambda(t_{max}-t_{min})};$ $\theta_{5} = \theta_{4} - \frac{q_{out}R_{out}h}{\lambda(t_{max}-t_{min})}$	0,3 0,5 0,7	1111		0,0 0,0 0,0	005 004 001	1 1 1		0 0 0	,295 ,432 ,289	0,295 0,432 0,289	0,300 0,367 0,160	0,225 0,372 0,268
$\theta_{0} = \theta_{1};$ $\theta_{b} = \theta_{4} - \frac{q_{out}R_{out}h}{\lambda(t_{max} - t_{min})}$	0,3 0,5 0,7	0 0 0)))	0,0	005 004 001			0,295 0,432 0,289		0,295 0,432 0,289	0 -0 0	0,225 0,372 0,268
Boundary conditions	k22		k	23	k	3 2	k;	33	k 8 4	k _e z	k	ky
$ \begin{aligned} \theta_{0} &= \theta_{1} - \frac{q_{out} R_{out} h \omega}{\lambda(t_{max} - t_{min})}; \\ \theta_{\delta} &= \theta_{4} - \frac{q_{out} R_{out} h}{\lambda(t_{max} - t_{min})} \end{aligned} $	0,51 0,80 0,55	0 0 6	0,2 0,4 0,2	285 128 288	0,2 0,3 0,2	230 376 268	0,8 0,8 0,8	510 800 556	0,280 0,424 0,288	0,235 0,376 0,269	0,285 0,426 0,289	0,387 0,422 0,172
$\theta_{0} = \theta_{1};$ $\theta_{5} = \theta_{4} - \frac{\text{qout}^{\text{Routh}}}{\lambda(t_{\text{max}} - t_{\text{min}})}$	0,51 0,80 0,55	0 0 6	0,2 0,2 0,2	285 128 288	0,2 0,2 0,2	230 376 268	0,5 0,8 0,5	510 300 556	0,280 0,424 0,288	0,235 0,376 0,269	0,285 0,426 0,289	0,387 0,422 0,172

TABLE 2. Constants in the Equations of the Computer Systems and the Scales for the Representation of Relative Time

$$\theta = \frac{t - t_{\min}}{t_{\max} - t_{\min}} \, .$$

The boundary conditions (for the first case)

$$\frac{\partial \theta}{\partial x}\Big|_{x=1} = -\frac{q_{out}R_{out}}{\lambda(t_{max} - t_{min})};$$

$$\frac{\partial \theta}{\partial x}\Big|_{x=K} = \frac{q_{out}R_{out}\omega}{\lambda(t_{max} - t_{min})}.$$
(7)

With the finite differences the boundary conditions were converted to the form (z = 5)

$$\frac{\theta_{4} - \theta_{5}}{h} = \frac{q_{out}R_{out}}{\lambda(t_{max} - t_{min})} \quad \text{or} \quad \theta_{5} = \theta_{4} - \frac{q_{out}R_{out}}{\lambda(t_{max} - t_{min})};$$

$$\frac{\theta_{1} - \theta_{0}}{h} = \frac{q_{out}R_{out}\omega}{\lambda(t_{max} - t_{min})} \quad \text{or} \quad \theta_{0} = \theta_{1} - \frac{q_{out}R_{out}h\omega}{\lambda(t_{max} - t_{min})}.$$
(8)

For the boundary conditions (8) we derived a system of differential equations of the following form:

$$\begin{aligned} \theta_{1}^{'} &= -a_{1i}\theta_{1} + a_{12}\theta_{2} - b_{13} \frac{q_{\text{out}}R_{\text{out}}h^{\omega}}{\lambda \left(t_{\text{max}} - t_{\text{min}}\right)}; \\ \theta_{2}^{'} &= a_{21}\theta_{1} - a_{22}\theta_{2} + a_{23}\theta_{3}; \\ \theta_{3}^{'} &= a_{32}\theta_{2} - a_{33}\theta_{3} + a_{34}\theta_{4}; \\ \theta_{4}^{'} &= a_{43}\theta_{3} - a_{44}\theta_{4} - b_{45} \frac{q_{\text{out}}R_{\text{out}}h}{\lambda \left(t_{\text{max}} - t_{\text{min}}\right)}. \end{aligned}$$
(9)

The computer systems of equations corresponding to systems (9) are the following:

$$U_{1}^{'} = -k_{11}U_{1} + k_{12}U_{2} - k_{x}U_{y}; \quad U_{2}^{'} = k_{21}U_{1} - k_{22}U_{2} + k_{23}U_{3};$$

$$U_{3}^{'} = k_{32}U_{2} - k_{33}U_{3} + k_{34}U_{4}; \quad U_{4}^{'} = k_{43}U_{3} - k_{44}U_{4} - k_{y}U_{y}.$$
(10)

Fig.3. Relative temperature of the hollow cylinder for K = 0.3, $(q_{out}R_{out})$ $/\lambda(t_{max} - t_{min}) = 1; \omega = 0; 1) \theta_0 = \theta_1; 2)$ $\theta_2; 3) \theta_3; 4) \theta_4.$

The schemes for the set of problems relating to a hollow cylinder for boundary conditions of the third and second kinds differ from each other only in the additional resistances and voltages simulating the quantities

$$b_{13} \frac{q_{out}R_{out}h\omega}{\lambda (t_{max} - t_{min})}$$
 or $b_{45} \frac{q_{out}R_{out}h}{\lambda (t_{max} - t_{min})}$

The numerical values of the constants in the computer systems of equations for the cases of nonsteady heat conduction examined here are shown in Table 2.

For $k_{11} \le k_{12}$ the systems of equations proved to be unstable. By means of a ν -transformation we derived stable systems. The coefficients with identical subscripts were ascribed new values as a result:

 $k_{11}^* = k_{11} + v = 0,345; 0,482; 0,309; 0,345; 0,482; 0,309;$ $k_{22}^* = k_{33}^* = k_{22} + v = k_{33} + v = 0,560; 0,850; 0,576; 0,560; 0,850; 0,576.$

The following sequence was adopted for the solutions of the problems: initially we solved the converted machine sys-

tems of equations; the solutions of these equations were converted into solutions of the computer systems (10), and the latter were converted into solutions for the systems of equations (9).

The initial voltages (U_{in}) and the voltages simulating the free terms (U_y) were assumed to be equal to 50 V.

Figure 3 shows the curves for certain cases of nonsteady heat conduction in the case of boundary conditions of the second kind.

NOTATION

t	is the temperature, °C;
t ₀	is the initial temperature of the cylinder;
tav	is the average temperature;
r	is the instantaneous cylinder radius;
Rout	is the outside cylinder radius;
$Fo = a\tau/R_{out}^2$	is the Fourier number;
a	is the coefficient of thermal diffusivity;
τ	is the time;
$K = R_{in}/R_{out}$	is the cylinder radius ratio;
Rin	is the inside radius;
Bi = $\alpha_{out} R_{out} / \lambda$	is the Biot number;
$\alpha_{\rm out}$	is the coefficient of heat transfer between the outside surface of the cylinder and the medium;
λ	is the coefficient of thermal conductivity;
A = α_{in}/α_{out}	is a relative quantity;
α_{in}	is the coefficient of heat transfer between the inside surface of the cylinder and the me- dium;
$\theta_i' = d\theta_i/dFo_i$,
h = (1 - K)/z	is the relative thickness of the cylindrical layer;
k11, k12, , k14	are the constants for the computer systems of equations;
$k_{ii} = M_{Fo}a_{ii}$	
a _{ii}	are the constants in the systems of ordinary differential equations;
$M_{Fo} = Fo/t_c$	is the scale for the representation of the relative time;
te	is the computer time, sec;
$\omega = q_{in}/q_{out}$	is the ratio of the heat-flux density at the inside surface of the cylinder (q_{in}) to the heat-flux density at the outside surface on the side (q_{out}) ;

t_{min}, t_{max}

$$M_y = (q_{out}R_{out}/\lambda(t_{max} - t_{min}))(1/U_y)$$

are the finite minimum and initial maximum temperature, uniform through the cross section of the cylinder; are constants in the computer systems (10);

is the scale for the representation of the relative temperature, 1/V;

is the scale for the representation of $q_{out}R_{out}/\lambda(t_{max} - t_{min})$, 1/V.

LITERATURE CITED

- 1. A. N. Dinnik, Application of Bessel Functions to Problems in Elasticity Theory (1915), Selected Works [in Russian], Vol. 2, Izd. AN UkrSSR, Kiev (1955).
- 2. A. Nessi and L. Niisole, Cheleur et Industrie, No. 93/95 (1927).
- 3. B. Ya. Lyubov and B. N. Finkel'shtein, Zh. Tekh. Fiz., 13, Nos. 1-2 (1943).
- 4. H. Carslaw and J. Jaeger, The Conduction of Heat in Solids [Russian translation], Nauka (1964).
- 5. A.V. Luikov, The Theory of Heat Conduction [in Russian], Vysshaya Shkola (1967).
- 6. N. Yu. Taits, The Technology of Heating Steel [in Russian], Metallurgizdat (1962).
- 7. B. Ya. Kogan, Analog Computers and Their Application in Studies of Automatic Regulation Systems [in Russian], Fizmatgiz (1963).
- 8. R. Tomovic and U. Karplyus, High-Speed Analog Computers [Russian translation], Mir (1964).
- 9. Computer Techniques, Handbook [in Russian], Vol.1, Énergiya (1964).
- 10. N. Yu. Taits, Yu. F. Gorshkov, and S. V. Ryabushko, Izv. Vuzov. Chernaya Metal., No. 12 (1967).